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Abstract 

Background: The rapid adoption of genomic selection is due to two key factors: availability of both high-through-
put dense genotyping and statistical methods to estimate and predict breeding values. The development of such 
methods is still ongoing and, so far, there is no consensus on the best approach. Currently, the linear and non-linear 
methods for genomic prediction (GP) are treated as distinct approaches. The aim of this study was to evaluate the 
implementation of an iterative method (called GBC) that incorporates aspects of both linear [genomic-best linear 
unbiased prediction (G-BLUP)] and non-linear (Bayes-C) methods for GP. The iterative nature of GBC makes it less com-
putationally demanding similar to other non-Markov chain Monte Carlo (MCMC) approaches. However, as a Bayesian 
method, GBC differs from both MCMC- and non-MCMC-based methods by combining some aspects of G-BLUP and 
Bayes-C methods for GP. Its relative performance was compared to those of G-BLUP and Bayes-C.

Methods: We used an imputed 50 K single-nucleotide polymorphism (SNP) dataset based on the Illumina Bovine50K 
BeadChip, which included 48,249 SNPs and 3244 records. Daughter yield deviations for somatic cell count, fat yield, 
milk yield, and protein yield were used as response variables.

Results: GBC was frequently (marginally) superior to G-BLUP and Bayes-C in terms of prediction accuracy and was 
significantly better than G-BLUP only for fat yield. On average across the four traits, GBC yielded a 0.009 and 0.006 
increase in prediction accuracy over G-BLUP and Bayes-C, respectively. Computationally, GBC was very much faster 
than Bayes-C and similar to G-BLUP.

Conclusions: Our results show that incorporating some aspects of G-BLUP and Bayes-C in a single model can 
improve accuracy of GP over the commonly used method: G-BLUP. Generally, GBC did not statistically perform bet-
ter than G-BLUP and Bayes-C, probably due to the close relationships between reference and validation individuals. 
Nevertheless, it is a flexible tool, in the sense, that it simultaneously incorporates some aspects of linear and non-linear 
models for GP, thereby exploiting family relationships while also accounting for linkage disequilibrium between SNPs 
and genes with large effects. The application of GBC in GP merits further exploration.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The rapid adoption of genomic selection (GS) is due to 
two key factors: (1) availability of high-throughput dense 
genotyping, and (2) availability of statistical methods to 
estimate and predict breeding values [1, 2]. The develop-
ment of such methods is still ongoing and so far, there is 

no consensus on the best approach. The methods avail-
able for genomic prediction (GP), can be broadly classi-
fied into two groups: linear and non-linear methods [3]. 
Genomic-best linear unbiased prediction (G-BLUP) is 
a typical example of a linear method, while the Bayes-
ian methods such as Bayes-(A/B/C/etc.), are non-linear 
methods and often implemented by Markov chain Monte 
Carlo (MCMC) algorithms. A major difference between 
the linear and non-linear methods lies in their prior 
assumptions about the effects of the single-nucleotide 
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polymorphisms (SNPs), which have been reviewed in 
detail by Neves et  al. [4] and De Los Campos et  al. [5]. 
Currently, linear and non-linear methods are treated as 
distinct approaches, and results from most empirical 
studies show that they yield similar prediction accuracies. 
However, in contrast, simulation studies reported signifi-
cant differences between linear and non-linear methods 
[6, 7], an issue which was resolved by Daetwyler et al. [3] 
who demonstrated that the number of QTL (quantitative 
trait loci) in relation to the structure of the genome was a 
major factor in this discrepancy.

G-BLUP is commonly used for routine genetic evalu-
ations because of its simple and less computationally 
demanding nature. Since Bayesian methods are often 
implemented by using MCMC algorithms, they are time 
consuming and computationally demanding when they 
deal with large numbers of SNPs. Hence, they are rarely 
used in routine genetic evaluations although they can 
potentially pick up and use SNPs with large effects or 
the actual causative variants. The need to reduce com-
putational demands, while maintaining the features of 
Bayesian methods, has led to the development of iterative 
methods (non-MCMC-based Bayesian methods) such as 
the VanRaden’s non-linear A/B [8], fastBayesB [9], MixP 
[10], or emBayesR [11] methods. These methods are 
iterative in nature hence computationally fast and yield 
prediction accuracies that are similar to those of MCMC-
based Bayesian methods. However, they remain focused 
on exploiting linkage disequilibrium (LD) just as their 
MCMC-based counterparts.

GP uses two sources of information: genetic relation-
ships among individuals and LD between SNPs and QTL 
[12, 13]. The emphasis put on these sources of informa-
tion varies with the GP method used. G-BLUP through 
the genomic relationship matrix (G) exploits the rela-
tionship in a given population more comprehensively 
than the pedigree-based relationship matrix (A), both 
by quantifying the variation in relationships between 
sibs and the historical relationships between individuals 
in the base generation of A [12, 14, 15]. However, com-
pared to G-BLUP, non-linear methods can better exploit 
the LD information gained through mapping of QTL [12, 
13]. Thus, methods that could exploit both genetic rela-
tionships and LD might help to increase prediction accu-
racy and the persistency of the accuracy across time and 
genetic distance.

Our aim was to develop an iterative method (referred 
to as GBC) that combines relationship information 
using the G-BLUP approach with information on the LD 
between QTL and neighboring SNPs using the Bayes-C 
[16] approach of GP. In a sense, GBC shares the Bayes-A 
property of including all SNPs in the prediction [7] but 
implies different prior assumptions on the effects. Given 

the importance of reducing computational demands 
when dealing with large numbers of SNPs, GBC fol-
lows the iterative approach of other non-MCMC-based 
methods but differs from both MCMC- and non-
MCMC-based Bayesian methods by combining aspects 
of G-BLUP and Bayes-C methods for GP. We evaluated 
GBC using an imputed 50 K SNP chip dataset. Further-
more, predictions from GBC were compared to those 
from G-BLUP and Bayes-C, using real data from a popu-
lation of genotyped bulls.

Methods
Phenotypes
Daughter yield deviations (DYD; [17]) on 3244 proven 
Norwegian Red bulls and their associated effective num-
ber of daughters  (de; i.e. weighted number of daughters 
for each bull) were obtained from GENO SA (http://
www.geno.no). These were extracted from the routine 
genetic evaluations of 2013 for three production traits, 
fat yield (Fkg), milk yield (Mkg) and protein yield (Pkg), 
and a health indicator, somatic cell count (SCC). The DYD 
is an estimate of the average performance of each bull’s 
daughters, corrected for all fixed and non-genetic random 
effects of the daughters and genetic effects of the bulls’ 
mates [17]. The minimum  de was 108 and the average  de 
was 177 with a standard deviation of ~31. The reliabilities 
of the DYD were calculated following Fikse and Banos 
[18] as r2DYD = de/(de + K ), where K =  (4 −  h2) and h2 
is the heritability of the trait used in the evaluations. The 
parameters used for each trait and average reliabilities for 
each trait are in Table 1. The average reliability between 
bulls ranged from 0.858 for SCC to 0.927 for Mkg.

Genotypes
Genotyping data were also provided by Geno SA for 
these bulls. Bulls were previously genotyped with differ-
ent SNP chips: 2450 bulls with the 25 K Affymetrix chip 
(Affymetrix Inc., Santa Clara, CA), 1650 were genotyped 
with the Illumina Bovine50K BeadChip (Illumina Inc., 
San Diego, CA), and 856 were genotyped with both.

Quality control was carried out by CIGENE (http://
www.cigene.no) and is described in detail by Solberg 

Table 1 Heritability  (h2) and  average reliability (r2
DYD

) 
of daughter yield deviations for the 3244 bulls

r2DYD = de/(de + K), where de is the effective number of daughters and 
K = (4 − h2)/h2

Trait h2
r
2

DYD

Somatic cell count (SCC) 0.136 0.858

Fat yield (Fkg) 0.213 0.906

Milk yield (Mkg) 0.277 0.927

Protein yield (Pkg) 0.235 0.915

http://www.geno.no
http://www.geno.no
http://www.cigene.no
http://www.cigene.no
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et  al. [19]. Briefly, quality control was carried out post-
genotyping within each set of SNP chip data so that 
animals with an individual call rate lower than 97% and 
SNPs with a call rate lower than 25% were removed. Pedi-
gree relationships between parent and offspring were set 
to missing if they exceeded a Mendelian error threshold 
of 1%; following this, SNPs with an overall Mendelian 
error rate higher than 2.5% were deleted; and, for parent–
offspring pairs with Mendelian errors less than 1%, SNP 
genotypes that were flagged as errors were set to missing. 
Finally, SNPs with a minor allele frequency lower than 
0.05 were discarded.

We used genotype imputation to obtain ~50  K SNP 
genotypes. The genotypes of bulls obtained with the 25 K 
Affymetrix chip were imputed to the SNP density of the 
Illumina Bovine50K BeadChip. Genotype imputation 
was performed by CIGENE (http://www.cigene.no) using 
Beagle v3.3.1 [20] and other in-house developed software 
as described by Solberg et al. [19]. Following these pro-
cedures, the data contained 48,249 SNPs on 3244 bulls. 
SNPs that were not mapped to the bovine reference 
genome assembly UMD 3.1 [21] and those on the X chro-
mosome were not included in the analyses.

Reference and validation sets
Bulls were divided into reference and validation sets fol-
lowing a standard animal breeding selection scheme, so 
that the validation dataset consisted of the 124 youngest 
sires born between January 1st 2007 and December 31st 
2008 with a minimum of 100 actual daughters. The refer-
ence set included bulls born between 1964 and 2005 with 
all performance records contributing to the DYD col-
lected before January 1st 2007, for a total of 3091 bulls. 
To check relationships between reference and validation 
sets following Clark et al. [22] and Daetwyler et al. [23], 
four measures of genomic relatedness were calculated 
from the genomic relationship according to VanRaden’s 
method 1 [8]. For each bull these measures were: (1) the 
mean relationship with the reference population (mean-
Rel); (2) the maximum relationship (Relmax); (3) the 
mean of the five largest absolute relationships (Rel5); 
and (4) the mean of the ten largest absolute relationships 
(Rel10).

Genomic prediction methods and data analysis
Three methods were implemented for GP: G-BLUP, 
Bayes-C, and GBC. Genetic and error variances used 
in the analyses were estimated from the dataset using 
ASReml v3.0 [24].

G‑BLUP
The G-BLUP model [7, 8] used to predict genomic esti-
mated breeding values (GEBV) was as follows:

where y is a vector of DYD for the reference set; 1 is a 
vector of ones; μ is the overall mean; Z is a design matrix 
that relates the records to genomic values; g is a vector of 
genomic values assumed to follow a multivariate normal 
distribution MVN  ~  (0, σ 2

g G), where G is the genomic 
relationship matrix and σ 2

g  is the genetic variance; and e 
is the vector of residuals assumed to follow a multivariate 
normal distribution MVN  ~  (0, σ 2

e I). G was calculated, 
following VanRaden’s method 1 [8] using all bulls, as 
G = MM′/2

∑

pj
(

1− pj
)

, and Mij =  xij −  2pj, where xij 
is the genotype of bull i for SNP j, with xij = 0, 1 or 2 for 
the reference homozygote, heterozygote and alternative 
homozygote, respectively, and pj is the allele frequency of 
the alternative allele of SNP j for all bulls.

Bayes‑C
Bayes-C, a sub-model of GBC (i.e. where the variance 
explained by the GBLUP term in GBC is set to zero), was 
also independently evaluated so that the relative per-
formance of both approaches can be compared. Bayes-
C assumes that a fraction (1 −  π) of the SNPs has zero 
effects and that the distribution of the effects for the other 
fraction (π) is normal [16]. Thus, the model of analysis for 
Bayes-C is:

where M is the design matrix of scaled SNP genotypes 
as in the calculation of G above; Q is a diagonal matrix 
with indicators on the diagonal that are 1 if the SNP 
has an effect (with prior probability π) and 0 if it has no 
such effect (with prior probability (1 −  π); q is a vector 
of SNP effects (qj) assumed to be normally distributed, 

i.e. qj ∼ N
(

0, σ 2
q

)

 with probability π and 0 otherwise. 
All other model elements are defined as previously. The π 
values used were estimated from the dataset via a search 
between 1% and then 5  to  30% in increments of 5% to 
obtain the optimal π values. The GEBV for the validation 
animals was calculated as Mvq̂ where Mv describes the 
scaled genotypes for each bull in the validation set, and q̂ 
is the posterior mean of the SNP effects. Bayes-C analyses 
were performed using the GS3 software [25]. The number 
of iterations was 20,000 with a burn-in of 2000 and a thin-
ning interval of 100. Using 50,000 or 100,000 iterations 
with a burn-in of 10,000 or 20,000 had no impact on the 
accuracy of prediction but increased computing time.

GBC
This method fits a Bayes-C model [16] simultaneously 
with an effect due to background genes following a 
GBLUP model. This was achieved by using the iterative 

(1)y = 1µ+ Zg + e,

(2)y = 1µ+ ZMQq + e,

http://www.cigene.no
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conditional expectation (ICE) algorithm [9], to which was 
added a correction for the uncertainty of the other effects 
of SNPs when deciding whether SNP j has an effect or 
not as described by Wang et al. [11]. The ICE algorithm 
uses the expectation/mean instead of the posterior 
mode, mainly because the posterior distribution is often 
bimodal, and when both modes are about equally high, 
the mode of the distribution is rather an arbitrary choice. 
The model of analysis used by GBC is:

where g is a vector of residual breeding values with dis-
tributional assumptions as described above for G-BLUP. 
All other elements of the model are defined as previously. 
The π values were estimated from the dataset via a search 
between 1% and then 5  to  30% in increments of 5% to 
obtain the optimal π values.

The G-BLUP term was implemented as described in 
the section on G-BLUP, but here, it is called the residual 
breeding value because it represents the breeding value 
after the SNPs with the largest effects have been fitted 
through the Bayes-C term. In the Bayes-C term, the SNPs 
with a large effect were assumed to have a variance of 
0.001 σ 2

g  as implemented here. Optimal π values and the 
fraction of genetic variance explained by the SNPs with a 
large effect in GBC are assessed by cross-validation.

Posterior probabilities of SNPs with a large effect in GBC
The posterior probability that a SNP j has a large effect is 
calculated from:

where PPRj is the prior-probability-ratio (=π(1  −  π)); 
and LRj is the likelihood ratio that SNP j has a large 
effect. The log(LRj) equals the log-likelihood of a model 
with versus without the effect of SNP j (see Appendix for 
a derivation):

where � = σ 2
e /σ

2
q ; mj are the scaled genotypes of SNP j 

for animals with records; y* are the records corrected for 
all other effects in the model except that of SNP j; PEV 
is the prediction error variance matrix of the G-BLUP 
model; and the m′

jPEVmj/

(

m′
jmj + �

)

 term corrects for 

the uncertainty about the other genetic effects in the 
model [11].

The effect of SNP j now becomes:

(3)y = 1µ+ ZMQq + Zg + e,

PostProb
(

Qjj = 1
)

=
PPRj ∗ LRj

PPRj ∗ LRj + 1
,

log
(

LRj

)

=
1

2
log (�)−

1

2
log

(

m′
jmj + �

)

+
1

2
(y∗′mjm

′
jy
∗ +m′

jPEVmj)σ
−2
e /

(

m′
jmj + �

)

,

q̂j = PostProb
(

Qjj = 1
)

∗m′
jy
∗/

(

m′
jmj + �

)

,

where the m′
jy
∗/

(

m′
jmj + �

)

 term equals the BLUP solu-

tion of the SNP effect when it has a large effect.

Predictive ability
The primary criterion for evaluating predictive abil-
ity was the accuracy of the predictions (r), calculated as 
the correlation between GEBV and DYD, divided by the 
square root of the average reliability of the DYD for the 

trait 
(

√

r2DYD

)

. The bias of predictions was calculated as 

the unweighted regression of DYD on the predicted val-
ues, where a regression coefficient of 1 denotes no bias, 
less than 1 implies that the spread of the GEBV is too 
large, and more than 1 implies their spread is too small.

Standard errors of the prediction accuracies and the 
regression coefficients on the DYD were computed using 
a custom bootstrapping R-script in R software [26]. The 
bootstrap procedure involved sampling with replacement 
of the GEBV 10,000 times. For each bootstrap sample, 
pairs of GEBV-DYD of an animal in the validation popu-
lation are sampled with replacement, i.e. the connection 
between a specific GEBV and DYD is maintained in this 
sampling process. The resulting GEBV were correlated to 
the DYD, and standard errors were computed from the 
10,000 bootstrap estimates of accuracy and bias. A Hotel-
ling–Williams test [27] for dependent correlations was 
used to determine whether differences between the vali-
dation correlations using alternative methods were statis-
tically significant.

Results
Genomic relatedness between validation and reference 
individuals
Table  2 shows the average genomic relatedness between 
reference individuals and between validation and refer-
ence individuals. Overall meanRel was equal to 0.03, while 
estimated Relmax between the validation and reference 
population was ~0.5, which suggests that nearly all the 
bulls in the validation population were closely related to 
the reference population (i.e. their sire is in the reference 

Table 2 Average of four measures of genomic relatedness

Standard deviations are in parentheses

Here, meanRel is the average relationship (1/NP)
∑Np

j=1 rel(i, j), where NP is the 
number of individuals in the reference population, rel(i, j) is the relationship 
between validation i and reference individual j; Relmax is the maximum (rel(i, j))
for individual i over all reference individuals j; Rel5 is (1/5)

∑Np

j=1 xij rel(i, j), where 
xij = 1 if j is among the top 5 (i, j) for individual i and Rel10 is the extension to the 
top 10 relationships for i

Relatedness meanRel Relmax Rel5 Rel10

Within reference 0.03 (0.01) 0.49 (0.04) 0.34 (0.05) 0.30 (0.05)

Between validation and 
reference

0.03 (0.00) 0.48 (0.09) 0.29 (0.05) 0.24 (0.05)
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population). For Rel5 and Rel10, genomic relatedness esti-
mates of 0.29 and 0.24, respectively, were obtained.

Prediction methods
Table  3 shows the accuracies of predictions using alter-
native prediction methods. Accuracies across the four 
traits ranged from 0.602 to 0.716 for G-BLUP, from 
0.604 to 0.733 for Bayes-C, and from 0.607 to 0.731 for 
GBC. The highest accuracy was found for Fkg across the 
three methods. Apart from the trait Fkg for which GBC 
resulted in a statistically significant higher accuracy than 
G-BLUP using the Hotelling–Williams test (P  <  0.05), 
we observed that, although not significant, in most cases 
the accuracies obtained with GBC were higher than with 
G-BLUP and Bayes-C. Generally, on average across the 
four traits, G-BLUP yielded the lowest prediction accu-
racy while GBC yielded the highest prediction accuracy. 
GBC yielded a 0.009 and 0.006 increase in prediction 
accuracy over G-BLUP and Bayes-C, respectively. The 
regression coefficients (Table  4) ranged from 0.881 to 
0.956 for SCC, from 1.259 to 1.326 for Fkg, from 1.435 to 
1.530 for Mkg, and from 1.410 to 1.506 for Pkg. Regres-
sion coefficients differed slightly across methods.

Effects of SNPs: Bayes‑C and GBC
The effects of SNPs estimated by Bayes-C and GBC are in 
Figs. 1, 2, 3 and 4. For Fkg, GBC picked up two SNPs with 
a large effect on chromosomes 5 and 12. The effects of the 
other SNPs were substantially shrunk towards 0. With 
Bayes-C, the same SNPs were observed to have large 
effects but several other SNPs with small to moderate 
effects were also found. For Mkg, we observed a similar 
trend, i.e. GBC identified SNPs on chromosomes 6, 12, 
and 28 with a large effect while Bayes-C also identified 
SNPs on chromosomes 6 and 12 as well as other SNPs. 

Chromosome 6 was also identified by both methods as 
a region that carries SNPs with a large effect on Pkg. In 
the case of SCC, there were many SNPs with (very) small 
effects across the genome as indicated by both methods 
especially with GBC.

Computing time and memory usage
Table  5 shows the computing time and memory usage 
for each method. With an Intel(R) Xeon(R) CPU E5-2670 
0 @ 2.60  GHz, G-BLUP took on average 2.51  min with 
average memory usage of about 2197  MB to complete 
the analysis, Bayes-C took on average 1.10  h with aver-
age memory usage of about 1296 MB, while GBC took on 
average 4.2 min with average memory usage of 2474 MB. 
Generally, across the four traits studied, G-BLUP was 
fastest, followed closely by GBC in terms of computing 
time while in terms of memory usage Bayes-C used less 
memory compared to G-BLUP and GBC.

Discussion
GP uses mainly two sources of information: genetic rela-
tionships between individuals and LD between SNPs 
and QTL [12, 13]. The contribution of both informa-
tion sources to prediction in a given population can vary 
across generations with relationships decaying across 
generations while LD may remains fairly persistent [12, 
13]. Currently, these sources are included separately in 
the linear (i.e. G-BLUP) and non-linear (i.e. Bayesians) 
GP methods. While G-BLUP tries to exploit relation-
ships maximally, the Bayes-(A/B/C/etc.) methods try to 
use LD between individual SNPs and genes maximally. 
To take advantage of both methods as well as to main-
tain short computing times, we developed and evaluated 
an iterative GP method, i.e. GBC that combines relation-
ship information using the G-BLUP approach with infor-
mation on LD between QTL and neighboring SNPs using 

Table 3 Accuracy (SE) of  the predicted values for  the 
youngest sires based on the different prediction methods

Accuracy =
corr(DYD,GEBV)

√

r2DYDSE: standard errors computed from 10,000 bootstrap samples

G-BLUP: genomic BLUP using genomic-based relationship matrix; Bayes-C: a 
non-linear method that fits zero effects and normal distributions of effects for 
SNPs; GBC: an iterative method that fits a G-BLUP next to SNP effects with a 
Bayes-C prior

SCC, somatic cell count; Fkg, fat yield; Mkg, milk yield; Pkg, protein yield

π refers to the optimal π values (i.e. proportion of SNP having large effects) when 
using Bayes-C and GBC

Trait(π) G‑BLUP Bayes‑C GBC

SCC (20%, 20%,) 0.602 (0.066) 0.604 (0.064) 0.607 (0.065)

Fkg (10%, 10%,) 0.716 (0.049) 0.733 (0.042) 0.731 (0.047)

Mkg (10%, 10%,) 0.705 (0.051) 0.701 (0.050) 0.719 (0.048)

Pkg (10%, 1%,) 0.695 (0.053) 0.689 (0.050) 0.696 (0.051)

Average 0.679 0.682 0.688

Table 4 Bias (SE) of the predicted values for the youngest 
sires based on the different prediction methods

Bias: measured as the regression of daughter yield deviation on the predicted 
values

SE: standard errors computed from 10,000 bootstrap samples

G-BLUP: genomic BLUP using genomic-based relationship matrix; Bayes-C: a 
non-linear method that fits zero effects and normal distributions of effects for 
SNPs; GBC: an iterative method that fits a G-BLUP next to SNP effects with a 
Bayes-C prior

SCC, somatic cell count; Fkg, fat yield, Mkg, milk yield; Pkg, protein yield

Trait G‑BLUP Bayes‑C GBC

SCC 0.881 (0.111) 0.956 (0.120) 0.881 (0.109)

Fkg 1.275 (0.120) 1.326 (0.131) 1.259 (0.113)

Mkg 1.530 (0.146) 1.435 (0.136) 1.459 (0.136)

Pkg 1.506 (0.157) 1.410 (0.149) 1.461 (0.100)
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the Bayes-C approach. Comparisons were made with the 
commonly used G-BLUP, which does not select SNPs, 
and Bayes-C, a non-linear method that assumes zero 
effects for a fraction of the SNPs and a normal distribu-
tion of the effects for the other fraction. Our results show 

that simultaneously fitting a GBLUP and a Bayes-C term 
can improve accuracy over G-BLUP and Bayes-C, alone. 
In terms of computational speed, GBC was much faster 
than a MCMC-based version of Bayes-C but used more 
memory compared to GBLUP and Bayes-C.

Fig. 1 Effects of SNPs estimated by using Bayes-C and GBC for somatic cell count (SCC). The absolute values of the estimates of the effects of SNPs 
are on the y axis. The X axis is ordered by chromosomes from 1 to 29. π refers to the optimal π value when using Bayes-C and GBC. Absolute values 
were standardized by 

√

σ 2
g . Standardization was only for plotting purpose
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Prediction methods
In this study, we compared our new method GBC to two 
existing GP methods: G-BLUP and Bayes-C. Generally, 
on average across the four traits, GBC yielded a 0.009 and 
0.006 increase in prediction accuracy over G-BLUP and 

Bayes-C, respectively. With GBC, we anticipated that, by 
fitting a residual SNP term in addition to Bayes-C SNP 
effects, both models would complement each other: the 
G-BLUP term mainly picking up effects that could be 
explained by linkage analysis [12] and the Bayes-C term 

Fig. 2 Effects of SNPs estimated by using Bayes-C and GBC for fat yield (Fkg). The absolute values of the estimates of the effects of SNPs are on 
the y axis. The X axis is ordered by chromosomes from 1 to 29. π refers to the optimal π value when using Bayes-C and GBC. Absolute values were 
standardized by 

√

σ 2
g . Standardization was only for plotting purpose
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picking up tight LD between SNPs and genes. Conse-
quently, we expected GBC to result in a higher accuracy 
of GP. Although the results agreed with this expectation, 
differences were small and were generally not statistically 
significant.

The GBC method has some similarity with Bayes-
A [7], i.e. both methods fit all SNPs in the model while 
differentiating between SNPs with a large variance and 
SNPs with a small variance. Habier et  al. [16] observed 
that Bayes-A performed marginally better than G-BLUP 

Fig. 3 Effects of SNPs estimated by using Bayes-C and GBC for milk yield (Mkg). The absolute values of the estimates of the effects of SNPs are on 
the y axis. The X axis is ordered by chromosomes from 1 to 29. π refers to the optimal π value when using Bayes-C and GBC. Absolute values were 
standardized by 

√

σ 2
g . Standardization was only for plotting purpose
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and Bayes-C with real data. GBC performed always 
marginally better than G-BLUP and Bayes-C, except 
for Fkg where it performed significantly better than 
G-BLUP. A possible explanation could be that the mod-
eled LD blocks that surround the major genes were large 
and were also reasonably well captured by G-BLUP 
[3]. In addition, as shown in Table  2, the relationships 
between the animals in the validation set and those in 

the reference set were generally high in our dataset. In 
such a case, the performance of GBC is only marginally 
better than that of G-BLUP and Bayes-C modeled inde-
pendently. This suggests that GBC works well if the level 
of relationships is high. If there are no relationships or if 
relationships decay across generations while LD remains 
fairly persistent, GBC also has the potential to yield more 
persistent accuracies across generations since it models 

Fig. 4 Effects of SNPs estimated by using Bayes-C and GBC for protein yield (Pkg). The absolute values of the estimates of the effects of SNPs are on 
the y axis. The X axis is ordered by chromosomes from 1 to 29. π refers to the optimal π value when using Bayes-C and GBC. Absolute values were 
standardized by 

√

σ 2
g . Standardization was only for plotting purpose
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both information sources simultaneously. Practically, 
the number of QTL or major genes that underlie a trait 
remains largely unknown and so is the variance explained 
by the genes with large effects. Examples of genes with a 
large effect are reported in the literature, e.g. the diacylg-
lycerol O-acyltransferase 1 (DGAT1) gene involved in fat 
percentage in dairy cattle [28]. The GBC model assumes 
that some genes with a large effect can be detected based 
on LD while the effects of the background genes are 
predicted by genomic relationships, which seems to be 
mainly true for Fkg.

GBC, as mentioned earlier, simultaneously fits Bayes-C 
and G-BLUP components. This means that all SNPs are 
included twice in the model, first in the Bayes-C term, 
and second in the G-BLUP term. The G-BLUP term 
includes all the SNPs to explain genomic relationships 
between the animals, whereas the Bayes-C term answers 
the question whether a SNP might explain more variance 
than expected based on its contribution to genomic rela-
tionships (where all SNPs contribute equally). Thus, GBC 
opens the opportunity for SNPs with extra-large effects 
to be included twice in the model and thereby increasing 
their weight in the GP.

The regression coefficients in Table 4 are a measure of 
bias of the GEBV predictions. Except for the trait SCC for 
which the regression coefficients were lower than 1, they 
were above 1 for the other three traits across all meth-
ods. This implies that, for the production traits, the vari-
ance of GEBV was deflated while for SCC, it was inflated. 
Since, in Norwegian Red cattle, selection pressure against 
directly recorded mastitis is strong and mastitis is quite 
highly correlated to SCC, biased GP is expected for SCC 
(a bivariate analysis that would fit both mastitis and SCC 
might avoid such bias). For the production traits (Fkg, 
Mkg and Pkg), all investigated methods also yielded 
biased GEBV, which is probably due to these 124 valida-
tion bulls being under strong selection for these traits. 
Considering that the regression coefficients from the 
pedigree-BLUP (result not shown) showed similar biases, 
one may attribute the biases to intrinsic aspects of the 
data such as selection.

Effects of SNPs: Bayes‑C and GBC
A key difference between Bayes-C and GBC lies in how 
they estimate and deal with the effects of SNPs. Bayes-
C assumes a priori zero effects for a fraction (1 − π) of 
the SNPs and a normal distribution of effects for the 
other fraction (π) [16]. GBC fits a Bayes-C like prior for 
the SNPs with large effects assuming that an estimated 
fraction π of the SNPs have a large effect with a vari-
ance of 0.001 σ 2

g  (this proportion can differ across traits) 
and then it fits a G-BLUP component for all SNPs. With 
GBC, all SNPs have an estimated effect, thus, in a sense, 
GBC methods share the Bayes-A property of including 
all SNPs in the prediction [7] but their prior assumptions 
about SNP effects differ. As shown in Figs. 1, 2, 3 and 4, 
the methods behaved differently in terms of number of 
SNPs with effects and their magnitude. However, inter-
estingly for the production traits, both methods found 
common SNPs with large effects on chromosomes 5, 
6, and 12. We did not try to identify candidate genes in 
these regions, as this was outside the scope of our study. 
Nevertheless, several genome-wide association studies 
(GWAS) have reported that these chromosomes harbor 
QTL that affect production traits in dairy cattle [29–32]. 
In the case of SCC, both methods showed no clear pat-
tern with many SNPs having very small effects.

There was a general tendency that GBC allocated large 
effects to (very) few SNPs while Bayes-C identified many 
more SNPs with moderate to large effects. This implies 
that, with GBC, only SNPs in high LD with the QTL tend 
to pick up the genes with major effects while the others 
are treated as residual SNP effects. Bayes-C also needs to 
capture SNP genetic relationships by fitting SNPs with 
large effects, and thus needs to fit more SNPs. There-
fore, the observed differences in prediction accuracies 
between both methods are a reflection of how genomic 
regions with large and small effects are treated. The abil-
ity of GBC to not neglect any SNP effect may explain 
why it tended towards higher accuracies than Bayes-
C. It seems that, the GBC method is also very precise 
in pointing towards QTL locations. This could be due 
to GBC showing some similarity to GWAS methods in 

Table 5 Computing time of the different prediction methods for each trait

Memory usage is in parentheses

G-BLUP: genomic BLUP using genomic-based relationship matrix; Bayes-C: a non-linear method that fits zero effects and normal distributions of effects for SNPs; GBC: 
an iterative method that fits a G-BLUP next to SNP effects with a Bayes-C prior

SCC somatic cell count; Fkg, fat yield, Mkg, milk yield; Pkg, protein yield

Method SCC Fkg Mkg Pkg

G-BLUP 00:03:24 (2233.492 MB) 00:02:18 (2233.492 MB) 00:02:31 (2159.716 MB) 00:02:31 (2159.716 MB)

Bayes-C 01:04:06 (1296.312 MB) 01:10:32 (1296.312 MB) 01:14:41 (1296.312 MB) 01:10:36 (1296.312 MB)

GBC 00:03:04 (2474.432 MB) 00:04:51 (2474.436 MB) 00:05:11 (2474.436 MB) 00:04:14 (2474.436 MB)
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which a single SNP and a G-BLUP term are fitted, with 
the G-BLUP term correcting the QTL signal for fam-
ily relationships. Although the prior distribution of the 
effects of SNPs and the actual proportion of variance they 
explain remain unknown, the results of this study indi-
cate that the assumed prior distribution for the effects of 
SNPs alongside the proportion of variance they explain in 
GBC tends to yield somewhat higher accuracy than the 
assumptions underlying Bayes-C.

Impact of the assumed variance for SNPs with a large effect 
in GBC
In this study, we assumed that, across the four traits stud-
ied, the SNPs with a large effect explained 0.1% of the 
genetic variance in GBC. This corresponds to the genetic 
variance explained by the third distribution in Bayes-R 
[33]. Bayes-R assumes that the effects of SNPs are derived 
from a mixture of four different normal distributions, 
each explaining 0, 0.01, 0.1, or 1% of the genetic variance, 
respectively. In our study, we set the genetic variance 
explained by SNPs to 0.1% because we considered that it 
was an intermediate value between that of genes with a 
small or a large effect. In addition, we did not want a situ-
ation where (very) few SNPs with a large effect explained 
a larger proportion of the genetic variance since most 
traits in livestock are polygenic. However, the proportion 
of genetic variance explained by the SNPs with a large 
effect might differ across traits. To investigate the impact 
of alternative assumptions on the variance explained 
for genes with a large effect, we also investigated a situ-
ation in which genes with a large effect explained 1% of 
the genetic variance. Assuming that SNPs with a large 
effect in GBC explained 1% of the genetic variance led 
to a 0.002 and 0.007 increase in prediction accuracy for 
Fkg and Mkg, respectively (result not shown), whereas 
for SCC and Pkg, it led to a 0.003 and 0.001 decrease in 
prediction accuracy, respectively. These results suggest 
that, in GBC, the optimal proportion of the genetic vari-
ance explained by SNPs with a large effect in GBC varies 
with traits. However, as also shown by the results, devia-
tion from a 0.1% genetic variance explained by SNPs with 
a large effect seems to have little impact on prediction 
accuracy in GBC.

GBC and other non‑MCMC‑based Bayesian methods
On the one hand, GBC shares some similarity with other 
non-MCMC-based Bayesian methods in the sense that 
it uses an iterative approach. A key advantage of the 
iterative methods (non-MCMC-based methods) over 
MCMC-based methods is their shorter computing time. 
Non-MCMC-based Bayesian methods such as fastBayesB 
[9], MixP [10], emBayesR [11] or VanRaden’s non-linear 

method [8] among others are computationally several 
orders faster than their MCMC counterparts. This is 
because generally, non-MCMC-based methods require 
much fewer iterations compared to MCMC-based meth-
ods. In agreement with the aforementioned studies, our 
results demonstrated the faster computing time of GBC 
compared to MCMC implementations of e.g. Bayes-
C (Table  5). On the other hand, GBC differs from the 
aforementioned non-MCMC-based methods in that it 
simultaneously incorporates aspects of G-BLUP and 
Bayes-C methods for GP and thereby making it flexible 
for exploiting information of genomic data. In addition, 
unlike most other non-MCMC-based methods, GBC 
adds a correction for the uncertainty of other SNP effects 
when deciding whether a particular SNP has an effect or 
not as recommended by Wang et al. [11]. Not accounting 
for these uncertainties could result in a decline of about 
8  to  9% in accuracy of prediction as demonstrated by 
Wang et al. [11].

Conclusions
We introduced and evaluated the GBC method for GP, 
which simultaneously fits G-BLUP and Bayes-C terms. 
The method was evaluated by using imputed 50  K SNP 
datasets and its relative performance was compared to 
G-BLUP and Bayes-C. GBC showed marginal advantages 
over G-BLUP and Bayes-C for most of the traits in terms 
of prediction accuracy. For Fkg, GBC performed signifi-
cantly better than G-BLUP, which agrees with the fact 
that Fkg is controlled by a few genes with a large effect. 
Overall in our study, statistically, GBC did not signifi-
cantly outperform G-BLUP and Bayes-C probably due to 
a high level of relationship between reference and valida-
tion individuals. However, it is a flexible tool in the sense 
that it simultaneously incorporates some aspects of both 
linear and non-linear models for GP, thereby exploit-
ing family relationships while also accounting for LD 
between SNPs and genes with a large effect. Computa-
tionally, GBC was much faster than Bayes-C with a com-
putational speed that is comparable to that of G-BLUP. 
The application of GBC in GP merits further exploration.
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Appendix: Log likelihood ratio of a SNP having a 
normally distributed effect versus no effect
The general form of the multivariate normal probability 
density is:

where y is a vector of multivariate normally distributed 
variables with mean μ and (co)variance matrix V.

First, we assume a model without a SNP effect and 
assume that V = Iσ 2

e , and μ = 0 for simplicity (assuming 
the actual data are corrected for all other effects in the 
model except for the putative SNP effect). The log-likeli-
hood of this null-model becomes:

For the alternative model with a SNP effect, we have 
V =

(

Iσ 2
e +mm′σ 2

q

)

, where m is a vector of SNP geno-

types of the animals with records, and σ 2
q  is the variance 

of the SNP effect. The log|V|−1/2 term becomes:

where � = σ 2
e

/

σ 2
q

.

Following Woodbury [34], the inverse of V can be writ-
ten as:

Such that y′V−1y becomes:

P
(

y|µ,V
)
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.

The log-likelihood of the alternative model with a SNP 
effect thus becomes:

Taking the log-likelihood ratio of the alternative to the 
null-model yields:

Following Wang et al. [11], we account for the fact that 
the correction of the data y was not performed using the 
true value of all other effects in the model, but using esti-
mates of these effects, which results in an estimate of y 
denoted by y*. The variance of y* given the real data y is 
denoted by the prediction error covariance matrix PEV, 
which is assumed approximately equal to the PEV matrix 
from the G-BLUP model. Accounting for this uncertainty 
due to prediction error variances of y*, the expectation of 
the y′mm′y term is:

The expectation of the log-likelihood ratio thus 
becomes:
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